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Figure 3. Reynolds number dependence of chemical product volume fraction, in a liquid-phase
shear layer, in the vicinity of the mixing transition (KD86, figure 13). Local Reynolds number, as
defined above (1), corresponds to lower scale. Absolute chemical-product values are overestimated
in both experiments (see text).
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Figure 4. Estimated probability density function of the high-speed-free-stream fluid mole fraction,
in the pre- (Re ' 1.75× 103, a) and post-transition regime (Re ' 2.3× 104, b). ξ denotes mixed-fluid
mole fraction (KD86, figures 8, 10).

unmixed (pure) fluid (KD86). For this flow, the composition of the mixed fluid
across the layer develops a preferred value in the post-transition regime, that is
well-correlated with the one inferred from the estimated overall entrainment ratio for
the layer (Dimotakis 1986; KD86). In the course of the mixing transition, the p.d.f.
evolves from one limit to the other (cf. KD86, § 5.4; and Masutani & Bowman 1986).
See figure 4. It is also characterized by a rather long ‘memory’ of the (typically, much
larger) initial compositional asymmetry in the relative contributions of each of the
free-stream fluids to the mixed fluid.

As noted in the discussions of these experiments (Breidenthal 1981, KD86), finite-
resolution limitations in these liquid-phase experiments overestimated the absolute
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amount of chemical product by, roughly, a factor of two, as confirmed in chemically-
reacting experiments which measured the chemical product volume fraction directly
(KD86). Nevertheless, the documented increase in the amount of mixing at the
transition Reynolds number is qualitatively correct and was found to occur at the
same Reynolds number in both gas- and liquid-phase shear layers (Bernal et al. 1980).

The transition to a more well-mixed state, in these experiments, was correlated
with the appearance of streamwise vortices and the ensuing transition to three-
dimensionality of flow that is nominally two-dimensional in the initial/inflow region
(Konrad 1976; Breidenthal 1981; KD86, Masutani & Bowman 1986; Bernal et al.
1980; Bernal & Roshko 1986). See also the discussion in the review paper by
Roshko (1990). Corroborating evidence was also found in the numerical simulations
of temporal shear layers by Moser & Rogers (1991) that followed the developing flow
to sufficiently high Reynolds numbers to document the beginning of this behaviour.

Jimenez, Martinez-Val & Rebollo (1979) measured velocity fluctuations in a two-
dimensional shear layer and found a power-law regime in the energy spectrum, with
an exponent close to − 5

3
, developing in the neighbourhood of the mixing transition.

Subsequent investigations of the mixing transition by Huang & Ho (1990) also
associated the development of an, approximately, (− 5

3
)-slope spectral regime with the

mixing transition, correlating it, however, with the number of pairings rather than
with local values of the Reynolds number, as proposed previously by Dimotakis &
Brown (1976), who correlated it with Bradshaw’s (1966) criterion in terms of initial
momentum thicknesses, i.e. that we must have x/θ > 103.† Nevertheless, in these
investigations, the Reynolds number in the vicinity of the mixing transition and
the development of the ≈ − 5

3
spectrum regime was found to be in the range of

3× 103 < Re(x) < 104, in accord with the range documented in figure 3.

Similar conclusions may be drawn from the work by Pawlak & Armi (1998), on
spatially accelerating, stratified shear layers. This flow is important because vorticity
(circulation) is generated baroclinically, as opposed to canonical shear layers for which
∆U = U1 − U2 is constant with a fixed circulation per unit length. As the authors
note, this flow also provides a further illustration of differences ‘between spatial
and temporal flow’ (cf. Thorpe 1971, 1973). Despite differences in the dynamics, the
authors note the late-stage evolution of their flows into a more-developed state. The
highest local Reynolds number in those experiments may be estimated to be just
below 104, or so, but the flow exhibits the beginnings of a qualitative transition at
the final downstream station, where Re(xfinal) ≈ 5× 103.

The investigations cited above support the notion of a turbulent transition in
shear layers at a local Reynolds number, Re ≈ 1–2 × 104. This number should be
regarded as imposing a necessary, but not sufficient condition, however. As discussed
in Breidenthal (1981, § 6), additional requirements involving the flow inflow conditions
can be argued for. By way of example, one can conceive of initially-laminar boundary
layers peeling off the splitter-plate trailing edge to form a shear layer that could
be thick enough for the local Reynolds number to be sufficiently high from the
outset. Hydrodynamic-stability considerations, however, would suggest that such a
flow would require some distance downstream for the Kelvin–Helmholtz instability to
develop that would be scaled by the initial momentum thickness (and wake profiles).

† See Slessor, Bond & Dimotakis (1998) for a recent discussion on this topic and experiments
on the effects of initial conditions on far-field shear-layer behaviour and mixing, indicating that
the state of fully-developed turbulence at high Reynolds number can depend on initial/inflow
conditions.
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As the Kelvin–Helmholtz instability would have to develop first, an additional distance
downstream can then be anticipated for the mixing transition to occur, corresponding
to a higher local Reynolds number yet.

The behaviour of canonical shear layers is not only important in its own right,
but also because local shear-layer regions can be found in other, as well as more-
complicated, flow fields. As a consequence, transitional behaviour observed in other
flows may be traceable to transitional behaviour in local shear-layer regions in those
flows, as will be discussed below.

2.2. Mixing transition in jets

The transition to a more well-mixed state in turbulent jets is less conspicuous than
in shear layers. Turbulent-jet flow being three-dimensional, even at low Reynolds
numbers, such a transition is not correlated with a transition to three-dimensionality,
as it can be in shear layers, for example. Nevertheless, as we shall discuss, experiments
indicate a qualitative difference in the behaviour of the scalar field, for values of the
Reynolds number that are lower than Remin ≈ 104 and values comparable to, or
higher than, that, as well as in various other quantitative measures.† This change in
behaviour can be gleaned from both non-reacting and chemically-reacting jets.

Experiments on scalar-mixing behaviour in non-reacting jets indicate a qualitative
transition in the turbulence and turbulent-mixing behaviour for Reynolds numbers in
the vicinity of 104. An illustration of this transition can be found in the laser-induced-
fluorescence images in figure 5, of the jet-fluid concentration in the plane of symmetry
of liquid-phase turbulent jets (Dimotakis, Miake-Lye & Papantoniou 1983).

Unmixed reservoir fluid (black) can be seen throughout the turbulent region and,
in particular, all the way to the jet axis in the lower Reynolds number image (a) at
Re ' 2.5 × 103. The imaged field spans 0 < z/dj < 35, where dj is the jet-nozzle
diameter and, here, z is the streamwise coordinate. This is not the case in the higher
Reynolds number (b) image at Re ' 104 (imaged field spans 0 < z/dj < 200), in
which jet fluid of varying concentrations can be seen to be more volume-filling within
the turbulent region.

Seitzman et al. (1990) investigated the outer entrainment and mixing region, using
laser-induced-fluorescence images of OH radicals in a H2–air turbulent diffusion
flame. A qualitative evolution in the complexity of the thin burning regions can
be seen as the Reynolds number was increased from 2.3 × 103 to 4.95 × 104 (cf.
their figure 3). In these experiments, this evolution is also influenced by decreasing
buoyancy and the decreasing relative importance of baroclinic vorticity generation,
as the Reynolds number was increased, and is, therefore, not entirely attributable to
Reynolds number effects.

Similar behaviour is reflected in the measurements of the r.m.s. of the scalar (jet
fluid concentration) fluctuations on the axis, in the far field of gas- and liquid-phase
jets, as a function of jet Reynolds number (Dowling & Dimotakis 1990; Miller
1991; and Miller & Dimotakis 1991). The data, in the form of the normalized scalar
fluctuation variance, are plotted in figure 6 (Miller 1991, figure 7.2). The liquid-phase
data exhibit a decrease in the fluctuation level with Reynolds number, with a rather
less sensitive dependence for Reynolds numbers higher than Re ≈ 2 × 104 or so.
Noting that lower fluctuation levels correspond to more homogeneous mixing, i.e.
a p.d.f. of concentration values that are more tightly clustered around the local

† In the discussion of jet Reynolds numbers, no distinction will be made between the jet-nozzle
flow Reynolds number and local far-field Reynolds number, the two being essentially equal for the
purposes of the present discussion (2b).
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(a) (b)

Figure 5. Jet-fluid concentration in the plane of symmetry of a round turbulent jet. (a) Re ' 2.5×103

(0 < z/dj < 35). (b) Re ' 104 (0 < z/dj < 200). Data from Dimotakis et al. (1983, figures 5 and 9).
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Figure 6. Normalized jet-fluid-concentration variance on the axis of a turbulent jet, as a function
of jet Reynolds number (Miller 1991, figure 7.2). Circles: liquid-phase jets (Miller 1991); triangles:
gas-phase jets (Dowling & Dimotakis 1990).
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(a) (b)

Figure 7. Laser-induced fluorescence far-field (z/dj = 275) jet-fluid concentration field in a liquid-
phase turbulent jet, at Re ' 4.5× 103 (a) and 18× 103 (b), in a plane normal to the jet axis (CD96,
figures 3 and 5). Colour map codes jet-fluid concentration.

mean, we see that, at least for the case of a liquid-phase jet, the flow transitions
to a more well-mixed state as the Reynolds number is increased, as in the shear
layer, even though in a more gradual manner (cf. figure 3). A much weaker, if any,
Reynolds number dependence of the normalized scalar variance can be seen for the
gas-phase-jet data. This difference in behaviour must be attributed to a Schmidt
number effect. Specifically, for Sc ≈ 1, the greater molecular species diffusion bridges
recently entrained reservoir-fluid filaments, better homogenizing the scalar field even
at lower Reynolds numbers. For the liquid-phase jets, Sc ≈ 103, improved mixing
requires the enhancement in interfacial surface-to-volume ratio (smaller distances
between isoscalars) associated with higher Reynolds numbers.

In experiments by Liepmann & Gharib (1992), in the near field of turbulent jets, the
number of azimuthal nodes in vortex structures becomes difficult to identify beyond
a certain Reynolds number, where the flow transitions to a much more chaotic state.
The jet near-field region is dominated by a near-axisymmetric shear-layer region, so
that such a transition may be rightly considered as a shear-layer transition in its
origins. Nevertheless, it persists beyond the jet-core region (z/dj . 5–6) and may be
regarded as a transition in the near field of the jet. The authors correlate it with a
laminar–turbulent transition in the jet-nozzle boundary layers. It is also interesting,
however, that it occurs at a jet Reynolds number close to 104.

Evidence for a mixing transition in jets can be seen in the more-recent liquid-
phase (Sc ' 2.0× 103) turbulent-jet measurements, at three Reynolds numbers (Re '
4.5×103, 9.0×103, and 18×103), in the transverse, far-field, laser-induced-fluorescence
cuts of the jet-fluid concentration field (Catrakis & Dimotakis 1996, hereafter referred
to as CD96). A pair of such images is shown in figure 7. These data span the full
transverse extent of the jet-fluid-concentration field, at the z/dj = 275 downstream
measurement location.

As with the shear-layer data (figure 2), we see (figures 5 and 7) unmixedness and
steeper scalar gradients associated with the pre-transitional state. The increase in
mixing in the post-transitional flow anneals steep scalar gradients, driving the scalar
field to a more homogenized state. This change in behaviour is also registered in the
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Figure 8. Jet-fluid concentration p.d.f. in the far field (z/dj = 275) of a turbulent jet. Re ' 4.5×103

(dotted line); Re ' 9.0× 103 (dashed line); Re ' 18× 103 (solid line). Three scalar-threshold values,
c1, c2, and c3, are also indicated (CD96, figure 8).

p.d.f. of the scalar field, as illustrated in figure 8. As can be seen, the scalar (jet-fluid
concentration) field has a preferred value for pre-transitional Reynolds numbers, i.e.
c/cref ≈ 2, where cref ' c0/200 with c0 the initial (jet-plenum) concentration, whereas
the lower probability of compositions between c/cref ≈ 2 and the p.d.f. ‘bucket’
representing unmixed reservoir fluid (c/cref → 0) is largely filled at Re ' 18 × 103

(cf. CD96, figure 8 and related discussion). One could speculate that the jet-fluid
concentration p.d.f., p(c/cref ), will become monotonically decreasing, i.e. no bucket, at
yet higher Reynolds numbers.

While this may be a minor point, we note that transition Reynolds numbers for
jets seem to be twice as large as for shear layers. On the one hand, the two flows are
sufficiently different to admit differences in their behaviour of a factor of 2, or so, in
Reynolds number. On the other, however, if the characteristic large scale δ(x) chosen
for the local Reynolds number definition of a jet is the local radius, as would be
appropriate if the length scale in the general case is defined as the transverse spatial
extent across which the shear is sustained, then the transition Reynolds number for
jets becomes very close to those for shear layers.

The Reynolds number dependence of turbulent mixing and chemical product
formation in turbulent jets was investigated in gas-phase jets (Gilbrech 1991; Gilbrech
& Dimotakis 1992). In this context, the turbulent-diffusion flame length, Lf , is
important, marking the distance from the nozzle required to mix and burn the
reactant carried by the jet, mixed to the composition dictated by the stoichiometric
mixture ratio, on a molecular scale. If the stoichiometry of the jet/reservoir reactants
and jet entrainment are held constant, and for fast chemical kinetics (high Damköhler
number limit), the flame-length dependence on the various flow parameters provides
us with a measure of the dependence of mixing on those parameters. Decreasing
flame lengths, for example, imply faster (better) mixing.

The dependence of the flame length on the stoichiometry of the jet-/reservoir-fluid
chemical system must first be factored in the analysis. In particular, for a momentum-
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Figure 9. Turbulent-jet diffusion flame combustion vessel schematic, indicating the jet and
logarithmically-spaced temperature-sensing wire array (Gilbrech 1991, figure 2.4).

dominated turbulent jet diffusion flame, the flame length is linearly dependent on the
(mass) stoichiometric mixture ratio (e.g. Hottel 1953), i.e.

Lf

d∗
' Aφm + B, where d∗ ≡ 2ṁ0

(πρ∞J0)1/2
(3)

is the jet source diameter, with ṁ0 the mass flux and J0 the momentum flux of the jet
discharge (Dimotakis 1984; Dahm & Dimotakis 1987), and φm is the mass of reservoir
fluid required to completely consume (react with) a unit mass of jet fluid (Broadwell
1982). The measurements may then be regarded as investigations of the behaviour
of the stoichiometric coefficient, A, and normalized virtual origin (intercept), B, and
their dependence, in turn, on the flow parameters.

In these experiments, long platinum wires were stretched across the turbulent
diffusion flame and spaced in equal logarithmic increments along the jet axis. These
permitted the line-integral of the temperature rise, ∆T (z, y), due to heat released in
the chemical reaction, to be measured along the y-coordinate (transverse to the jet
axis), as a function of the downstream coordinate. See figure 9.

The experiments utilized the F2 + NO chemical reaction, with F2 diluted in N2

forming the jet fluid, and NO diluted in N2 forming the quiescent reservoir fluid.
With this chemical system, an adiabatic flame temperature rise, ∆Tf , as low as 7 K
was realized, with the reaction still in the fast-kinetic regime. Such low values were
dictated by the results of a separate investigation that assessed the effects of buoyancy
and ascertained that the measurements were realized in the momentum-dominated



80 P. E. Dimotakis

0.25

0.20

0.15

0.10

0.05

0
1.4 1.6 1.8 2.0 2.2 2.4

log10(x /d*)

2.6

dP
Lw

φ =18

φ =15

φ =10

φ = 7

Figure 10. Product thickness normalized by wire length vs. log10(z/d∗), for several stoichiometric
mixture ratios (Gilbrech & Dimotakis 1992, figure 5).

regime for this heat-releasing flow. The Reynolds number was varied by varying the
pressure in the combustion vessel.

If the temperature rise, ∆T (z, y), in the chemically-reacting jet is normalized by
∆Tf , the adiabatic flame temperature rise for the reaction, the line integral across the
jet axis can be used to form a product thickness, δP (z), analogous to the one defined
for shear layers, i.e.

δP (z) ≡
∫ ∞
−∞

∆T (z, y)

∆Tf
dy (4)

(cf. Bilger 1980, § 3.1.3; Kuo 1986, § 1.9; and Dimotakis 1991, equations 41 and
discussion following).

Sample data are depicted in figure 10, for a range of values of the (mass) stoichio-
metric mixture ratio, φm. The data plot the product thickness δP , normalized with the
length, Lw , of the platinum resistance wire used to measure the line integral, versus
the logarithm of z/d∗, where d∗ is the jet source diameter (3).

We note that well upstream of the flame length, i.e. for z � Lf , the entrained
reactant is consumed on, or just inside, the boundary of the turbulent region.
There, the turbulent fluid is jet-fluid-reactant rich and it need comprise only a
small fraction of the mixed fluid to consume the entrained reservoir-fluid reactant.
The diffusion/reaction process then takes place in a thin peripheral reaction zone, at
y = ±Rr(z), whose ensemble-averaged radius, Rr(z), is proportional to the streamwise
coordinate, z. This picture is corroborated by the OH images obtained by a number
of investigators in H2–air jet flames (cf. Seitzman et al. 1990 and Namazian & Kelly
1988, for example). As a consequence, the line integral of the time-averaged temper-
ature rise across the turbulent region increases as the chemical reaction releases heat
in the thin reaction zones at the edges of the turbulent region.

It was conjectured that the radial integral of the temperature rise, at a given station,
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z, increases in proportion to the entrainment velocity at that station, ue[Rr(z)], i.e.

d

dz

∫ ∞
0

∆T (z, r) dr ∝ ue[Rr(z)]∆Tf, (5)

or, for a momentum-driven turbulent jet,

d

∫ ∞
−∞

∆T (z, y)

∆Tf
dy ∝ dz

2πRr(z)
∝ dz

z
. (6)

Integrating this relation and scaling with the flame length Lf , we have

δP (z � Lf)

Lf
' a log

(
z

Lf

)
+ b. (7)

This dependence of the line integral on z suggested the logarithmic wire spacing used
in the experiment and was used in the analytical form of the fit for the line-integrated,
time-averaged, temperature-rise data (cf. figure 10).

Beyond the end of the flame region, i.e. for z > Lf , no further heat is released and, in
the absence of buoyancy effects, the temperature excess becomes a passively-convected
scalar with a self-similar profile. In that case,

∆T (z, y) ' ∆T (z, 0)f

(
y

z

)
∝ 1

z
f

(
y

z

)
and the product thickness line integral becomes independent of the downstream
coordinate, z, i.e.

δP (z > Lf) ∝
∫ ∞
−∞

1

z
f

(
y

z

)
dy 6= fn(z). (8)

As can be seen in figure 10, the experimental results confirm the conjecture for
z/Lf � 1. They are also consistent with the anticipated conserved-scalar behaviour
of the temperature rise for z/Lf > 1, i.e. a product thickness that asymptotes to a
constant value.

Such data allow us to estimate the flame length, Lf . In particular, one can accept an
operational definition of Lf as the location where the product thickness line integral
(4) has attained 99% of its asymptotic value, as one does for a boundary-layer velocity
profile, for example.

Figure 11 plots the stoichiometric coefficient, A, in the flame length (3), i.e. the slope
of the flame length vs. the stoichiometric mixture ratio φm (Gilbrech 1991, figure 4.8).
This may be regarded as the additional length, in units of the jet source diameter, d∗,
required to entrain, mix, and react with a unit increase in the stoichiometric ratio of
the jet-/reservoir-fluid chemical system (3), i.e.

A ≡ d

dφm

(
Lf

d∗

)
. (9)

In the fast-kinetic regime, as was the case in these experiments, this quantity is a
useful measure of mixing. It separates the self-similar, far-field behaviour from that
of the virtual origin in the overall mixing process.

The data in figure 11 indicate that mixing in the far field of a turbulent jet improves
relatively rapidly with increasing Reynolds number. Specifically, A decreases until a
Reynolds number of, roughly, 2× 104, with a much weaker dependence on Reynolds
number, if any, beyond that. These data are in accord with the non-reacting, liquid-
phase data in figure 6, which also indicate improved mixing up to Reynolds numbers
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Figure 11. Flame length stoichiometric coefficient A (3). Squares: gas-phase chemically-reacting
jets (Gilbrech 1991); diamond: laser-induced fluorescence, liquid-phase jets (Dahm et al. 1984);
Lambda: pH-indicator, liquid-phase jets (Hottel 1952; Weddel 1941); triangles: flame length data
inferred from gas-phase, non-reacting jets (Dowling 1988, see text).

of 2 × 104, or so, with a weaker dependence beyond that. The latter data, however,
do not permit the separation of the far-field and virtual-origin contributions to the
overall mixing process, as do the chemically reacting jet data. We should also note that
the near- and intermediate-field behaviour, which contributes to the virtual origin of
the mixing process and the resulting flame length, does not exhibit the same Reynolds
number dependence (Gilbrech 1991).

A potential difficulty should be noted between the inferred behaviour based on non-
reacting, gas-phase jet data (figure 11: Dowling 1988, triangles), and the chemically-
reacting, gas-phase data (Gilbrech 1991, squares). The values estimated from the
non-reacting gas-phase data were derived assuming certain similarity properties of
the concentration p.d.f. and the value of the virtual origin of the mixing process (cf.
discussion in Dowling 1988, § 5.4, and Miller & Dimotakis 1991, Appendix B). Partly
as a consequence, as also noted in the comparison between the data in figures 6 and 11,
it is not possible to separate the contribution to the flame length of the (rather large)
mixing-process virtual origin, and its dependence on Reynolds number (Gilbrech
1991), from the Reynolds number dependence of the far-field mixing process, i.e. of
the flame-length stoichiometric coefficient, A.

Similar behaviour was documented in experiments on lifted-flame behaviour by
Hammer (1993), who notes a change in the scaled lift-off height of turbulent jet
flames at a jet Reynolds number Re ≈ 1.8× 104, beyond which the Reynolds number
dependence is weaker. See data in his figure 3.8, and discussion following.

2.3. Mixing transition in other flows

The observations of mixing transitions in shear layers and jets suggest that a minimum
Reynolds number may be required for turbulence to develop into a more well-
mixed state in these flows. Specifically, we must have Re > Remin, with Remin in the
neighbourhood of 1 × 104 to 2 × 104, for fully-developed turbulent flow. This value
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Figure 12. Turbulent boundary-layer Π parameter vs. Reδ∗ . Skin-friction-law fit data
(Collins et al. 1978, table 4).

does not appear to be peculiar to the far-field behaviour itself in turbulent jets and
free-shear layers, two flows that are already substantially different by any of a number
of different measures. As it turns out, other flows also exhibit similar transitions at
comparable values of the Reynolds number, as we shall discuss below.

Pipe flow transitions out of its slug/puff regime to a less intermittent, fully-
developed turbulent state over a range of Reynolds numbers that depends on the
entrance conditions. This sensitivity to initial conditions diminishes, however, at a
Reynolds number in the vicinity of 104 (Wygnanski & Champagne 1973).

Coles’s (1956) turbulent boundary-layer wake parameter, Π , that scales the outer
flow region of a turbulent boundary layer is found to increase with Reynolds num-
ber for a zero-pressure-gradient boundary layer, attaining an asymptotic value of
Π = 0.620 at a Reynolds number of Re = Reδ∗ ≡ U∞δ∗/ν ' 0.8 × 104, based on
the boundary-layer displacement thickness (figure 12). Parenthetically, a turbulent
boundary layer may be regarded as characterized by three transverse scales, whose
separation increases with increasing Reynolds number: the inner, viscous sub-layer;
the intermediate, log-law layer; and the outer, wake region layer. The integral dis-
placement thickness was used here as the appropriate measure of the transverse extent
of the flow and the length scale in the definition of the local Reynolds number. See
Coles (1968) and Collins, Coles & Hicks (1978) for a discussion, and their table 4
and figure 6 for a compilation of low-speed turbulent boundary-layer flow data.

In his review of bluff-body flows, Roshko (1993) documents several Reynolds
number regimes, indicated by the base pressure of a circular cylinder. The (negative)
base pressure increases in the range 0.3 × 104 < Red ≡ U∞dcyl/ν < 2 × 104 (cf.
Roshko 1993, figure 1). He attributes this behaviour to a transition in the separating
shear layers, analogously to the documented near-field behaviour in jets. A similar
conclusion may be reached on the basis of the fluctuating (sectional) lift coefficient
(figure 13) that exhibits a weaker Reynolds number dependence for cylinder Reynolds
numbers, Red & 104 (Norberg & Sundén 1987).
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Figure 14. Scaled turbulent kinetic energy dissipation (10) vs. Taylor Reynolds number
(Sreenivasan 1984, figure 1).

Measurements of the scaled turbulent kinetic energy dissipation rate, per unit mass,
i.e.

α =
εl

u′3
, (10)

in flow behind square grids, where ε is the kinetic energy dissipation per unit mass, l
is the longitudinal (integral) length scale, and u′ is the r.m.s. velocity fluctuation level,
show that α decreases relatively rapidly with increasing Taylor Reynolds number,

ReT ≡ u′λT
ν
, (11a)
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Figure 15. Experimental variation of skewness factor (12) with Taylor Reynolds number, in various
flows (Van Atta & Antonia 1980, figure 1; axes labels modified to conform to present nomenclature).

where λT is the Taylor microscale, until a value of ReT ≈ 70–100, beyond which
it becomes much less sensitive to Reynolds number, attaining a value of α ≈ 1 at
higher Reynolds numbers. See figure 14. The value of this constant, however, may
not be universal, with measurements in the range 1 < α < 2.7 behind non-square
grids (Sreenivasan 1984).†

A similar conclusion regarding the Taylor Reynolds number dependence of the
scaled energy dissipation was documented by Jimenez et al. (1992) based on numerical
simulations of turbulence in a spatially-periodic cube, in the range 36 < ReT 6 170.
They report a value of α ' 0.65, attained for ReT > 95. Since

ReT ≈ Re1/2, (11b)

it, again, appears that Re > Remin ≈ 104 is a necessary condition for fully-developed
turbulent flow.

J. Jimenez has proposed (private communication) an alternative explanation for the
Reynolds number behaviour of α (10) in this flow, as well as in grid turbulence, noting
the decrease in the energy-spectrum wavenumber span, and, therefore, in its integral,
u′2, with decreasing Reynolds number. He suggests that scaling the dissipation rate,
ε, with an outer flow speed, U, instead of the r.m.s., u′, could perhaps account for the
observed Reynolds number behaviour.

That this neighbourhood of Taylor Reynolds numbers is special in turbulent-flow
behaviour is also evident in the compilation of data by Van Atta & Antonia (1980,
figure 1), for the skewness factor,

S ≡M3, (12)

where

Mn ≡ 〈(∂u/∂x)n〉
〈(∂u/∂x)2〉n/2 (13)

† We note here that the proposal that α → const., i.e. that the kinetic-energy dissipation should
scale as,

ε =
ν

2

〈(
∂ui

∂xj
+
∂uj

∂xi

)2
〉

= α
u′3

`
,

with α taken as a constant independent of viscosity, as originally proposed by Taylor (1935, 1937),
is a cornerstone of turbulence theory. Its exact validity should not, however, be accepted a priori
(Saffman 1968); a weak dependence on Reynolds number is (still) not excludable by available data.
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for various flows, to assess various models, including the argument by Saffman (1968,
1970), that, if vorticity is log-normally distributed, then S → const. As can be seen,
the data indicate a weak Reynolds-number dependence, at high Reynolds numbers.
The slow increase in skewness, with increasing Taylor Reynolds number, does not
commence until ReT ' 100–140, or so (figure 15). Beyond that, the data indicate an
ever-increasing intermittency, i.e. a wider (scaled) p.d.f. of velocity-gradient values, as
correctly conjectured by Landau, in response to the original Kolmogorov–Oboukhov
(1941) proposals,† and first reported by Batchelor & Townsend (1949). The qualitative
conclusion of ever-increasing intermittency, for ReT & 102, is also confirmed by the
data compiled by Van Atta & Antonia (1980, figure 2), for the next velocity-gradient
moment, the kurtosis, K≡M4 (13) for various flows.

That ReT must exceed 100, or so, for bona-fide turbulence to be expected, has been
assumed by the fluid mechanics community for some time. As articulated by Saffman
(1978):

The value of ReT [present notation] probably has to exceed 100 to represent fully
developed turbulence in which the dissipation seems to occur on scales smaller than
those containing the energy.

We will return to this point below.
Experiments that included measurements of the torque in Couette–Taylor flow,

in the range of Reynolds numbers of 800 < Re < 1.23 × 106 (Lathrop, Fineberg &
Swinney 1992a, b) revealed a ‘well-defined, non-hysteretic transition’ in a narrow range
of Reynolds numbers, 104 < Retr < 1.3× 104. The flow was found to be qualitatively
different, below and above this transition, as illustrated in their flow-visualization
data reproduced in figure 16, with pre- and post-transition differences reminiscent
of the corresponding changes in jets (cf. figure 5). Additional flow-visualization
data are available in Lathrop et al. (1992a, figures 1a, b). Beyond this transition,
the dependence of the torque on Reynolds number becomes progressively weaker.
Significantly, however, the torque does not attain viscosity-independent behaviour to
the highest Reynolds numbers investigated (figure 17).

In thermal convection, a transition from ‘soft turbulence’ to ‘hard turbulence’ was
noted for Rayleigh numbers, Ra ≈ 108, marked by a qualitative change in the p.d.f.
of the measured temperature fluctuations (Heslot, Castaign & Libchaber 1987). Since
Re ≈ Ra1/2 for the resulting turbulence in this flow (Castaign et al. 1989), we again
recover a minimum Reynolds number, as required for fully-developed turbulence, of
Re ≈ 104.

In recent experiments on incompressible Richtmyer–Meshkov-instability flow, in-
terfaces between fluids with different densities were impulsively accelerated with
relatively large initial interfacial perturbations (J. W. Jacobs & C. E. Niederhaus,
unpublished work). In the resulting flow, the impulsively seeded baroclinic vorticity
produces large-scale vortical structures that become turbulent when the Reynolds
number, ReΓ = Γ/ν, with Γ the estimated vortex circulation, exceeds approximately
104 (J. Jacobs, private communication). For a circular vortex, Γ = (π/2)Uδ, with U

† Kolmogorov (1962) credits Landau for noting, quite soon after the original Kolmogorov–
Oboukhov similarity hypotheses were formulated, ‘. . . that they did not take into account a circum-
stance which arises . . . from the assumption . . . of the transfer of energy from the coarser vortices
to the finer: with increase of the [outer-to-inner scale] ratio L : l, the variation of the dissipation of
energy, ε, . . . should increase without limit.’ A footnote in the original (Russian) Landau & Lifshitz
volume Fluid Mechanics (1959), it has found its way into the main text in subsequent editions (cf.
discussion in Frisch 1995).
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(a) (b)

Figure 16. Couette–Taylor flow-visualization data at (a) Re = 0.6× 104, and (b) Re = 2.4× 104.
From Lathrop et al. (1992b, figures 5a, b). Reproduced by kind permission of Professor H. Swinney.

the velocity across the vortex core (twice the circumferential velocity at the core edge)
and δ the vortex core diameter. This definition of the vortical-structure Reynolds num-
ber is close to that adopted for shear layers (2a). For shear-layer large-scale vortical
structures, Γ (x) ' ∆Ul(x), where l(x) ≈ 4δω(x) ' 2δ(x) is the large-scale-structure
spacing at x, with δω the velocity-profile maximum-slope (vorticity) thickness.

3. A criterion for fully-developed turbulence?
As discussed in the Introduction, it has been implicitly, or explicitly, assumed for

some time that the canonical attributes of turbulence are only to be expected at large
Reynolds numbers. The preceding observations suggest, however, that, in addition,
a rather distinct transition to a more-developed, better-mixed turbulent state occurs,
within a relatively narrow range of Reynolds numbers, with a Reynolds number
dependence of many flow properties that is found to be weaker beyond that.

In view of the wide variety of different flows that exhibit this behaviour, the
inference can also be made that there exists a property of turbulence that induces it
to transition to a well-mixed state, is associated with Reynolds numbers in excess of
Remin ≈ 104, and appears to be rather independent of the details of the flow geometry.
The following is a proposal to account for this behaviour.

That this transition appears to be independent of the flow geometry suggests that
the explanation may not lie with the large-scale dynamics, or the development of
distinct features and organized patterns in these flows. Such attributes are, typically,
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Figure 17. Exponent for the measured torque, T, in Couette–Taylor flow, i.e. pT ≡
∂(log10T)/∂(log10 Re): (a) eight-vortex state, (b) ten-vortex state (Lathrop et al. 1992b, figure 9;
legends modified to conform to present nomenclature).

flow-geometry dependent. One is rather led to consider the significance of the various
inner scales of turbulence and their Reynolds number scaling.

The 1941 Kolmogorov–Oboukhov proposals imply that the dynamics in the range
of scales of size λ that are unaffected by an outer scale, δ, but are large compared
to an inner, viscous-dissipation scale, which we shall take as equal to the (defined)
Kolmogorov scale, i.e.

λK ≡
(
ν3

ε

)1/4

, (14)

i.e. for

λK � λ� δ, (15)

can be treated in a universal, self-similar fashion.† In this range of scales, for example,
the energy spectrum is predicted (and found) to exhibit a near power-law behaviour
with a negative ≈ 5

3
exponent (e.g. Monin & Yaglom 1975).

To refine the bounds in (15), we appreciate that independence from the dynamics
of the outer scale, δ, requires that an inner eddy scale, λ, should be smaller than a

† Kolmogorov (1962) credits Richardson with the idea on which the notion is based, namely, ‘of
the existence in turbulent flow of vortices on all possible scales l < r < L [λK , λ, and δ, respectively,
in the present notation] between the ‘external scale’ L and the ‘inner scale’ l and of a certain uniform
mechanism of energy transfer from the coarser-scaled vortices to the finer.’ The attribution is, most
likely, to the proposals and ideas documented in the Richardson (1922) monograph.
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scale that can be generated directly from the outer scale δ. Such a scale would be
estimated on the basis of an outer laminar-layer thickness, λL, that can be generated
by a single δ-size sweep across the whole transverse extent of the turbulent region,
for example. For a laminar layer growing over a spatial extent δ, we have

λL

δ
' clamRe

−1/2. (16a)

The prefactor corresponding to the 99% thickness of a laminar wall (Blasius) bound-
ary layer, for example, is given by

(clam)b.l. ' 5.0, (16b)

and is only a weak function of the threshold value. For the 99% thickness of a
laminar shear layer (stability issues aside) with a velocity ratio, r = U2/U1 ' 0.5 we
have (e.g. Lock 1951)

(clam)r= 0.5s.l. ' 6.8, (16c)

with values (weakly) decreasing with increasing velocity ratio, r. Typical internal shear
layers will be characterized by lower local velocity ratios, i.e. r → 1, with associated
thickness prefactors that may then be assumed close to the Blasius boundary-layer
value; equation (16b). Such scales are then directly connected by viscosity to the outer
scale of the flow, δ, in the sense that a single δ-size sweep across the turbulent region
will generate them through viscous action. As noted by H. W. Liepmann in private
conversation many years ago, by virtue of their dependence on Reynolds number,
such scales are closely related to the Taylor microscale, λT ; cf. equations (11a). For
the purposes of many discussions, prefactors, such as the one in (16a), are omitted, in
which case the two scales are, in fact, the same. We shall accept a generic thickness
estimate for such internal laminar layers of

λL

δ
= 5.0Re−1/2, (16d)

dubbing the resulting thickness the Liepmann–Taylor scale.
At the other end of the spectrum, the inertial-range requirement that internal

eddying motions must be inviscid dictates that their local scale λ must be large
with respect to an inner viscous scale, λν , which we may assume as proportional to
the (defined) Kolmogorov dissipation scale, λK (14). This allows the inequality that
bounds the inertial range of scales (15) to be refined, i.e.

λK

δ
<
λν

δ
<
λ

δ
<
λL

δ
< 1, (17)

yielding a necessary condition for fully-developed flow, also refining the ansatz artic-
ulated by Saffman (1978).

To translate this inequality to a Reynolds number requirement requires the
Reynolds number dependence of the ratio of the various scales in (17) to the
outer scale, δ. We shall rely on (16d) for the estimate of the outer laminar-layer
thickness, λL, as suggested by Liepmann. This can be compared to the Taylor scale
for a turbulent jet, for example, for which direct estimates of the latter are available.

For turbulence in the far field of a jet, the Taylor scale, λT , can be estimated from
the Taylor Reynolds number on the jet axis (11). This is approximately given by

ReT ' 1.4Re1/2 (18)

(e.g. Dowling & Dimotakis 1990; Miller & Dimotakis 1991). Using a value of
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u′ ' 0.25ucl , on the axis of the turbulent jet, and δ(x) ' 0.4(x − x0) for the local jet
diameter, we obtain,

λT

δ
' 2.3Re−1/2, (19)

which is a little smaller but close to the laminar-layer thickness, λL (a prefactor of 2.3
for λT , vs. 5.0, for λL), especially considering that it is estimated from flow properties
on the jet axis, where velocities are higher. A higher value would be appropriate if it
were to serve as the corresponding measure throughout the jet cross section, bringing
it closer to λL.

An appropriate inner viscous scale, λν , can be estimated in terms of the wave-
number kν , where the energy spectrum deviates from the − 5

3
power-law behaviour,

or, kνλK ' 1
8

(Chapman 1979; Saddoughi 1992). This yields†

λν ≈ 2π

kν
' 50λK, (20)

accepting as an operational definition of λν the scale where the turbulence spectrum
departs from the ≈ − 5

3
power-law. See figure 18.

To estimate the Reynolds number and outer-scale dependence of λν , we can use the
expression from Friehe, Van Atta & Gibson (1971), for the energy-dissipation rate on
the jet axis, in the far field, i.e.

ε ' 48
u3
j0

dj

(
dj

x− x0

)4

, (21)

where uj0 is the jet-nozzle velocity, dj the jet-nozzle diameter, and x0 the virtual origin
of the far-field turbulent flow. Substituting in (14) we then have

λK

δ
' 0.95Re−3/4, (22)

where Re here is the local – or initial, cf. (2b) – jet Reynolds number. Therefore, for a
turbulent jet,

λν

δ
' 50Re−3/4. (23)

Substituting for λL, λν , and λK in (17), we obtain

Re−3/4 <
λν

δ
≈ 50Re−3/4 <

λ

δ
<
λL

δ
≈ 5.0Re−1/2 < 1. (24)

The range of intermediate scales, i.e. scales smaller than λL but larger than λν , can
be seen to grow rather slowly with Reynolds number. Specifically, the ratio

N =
λL

λν
, (25a)

which measures the extent of the uncoupled range of spatial scales, i.e. the number
of viscous scales within a Taylor scale, is given by

N≈ 0.1Re1/4, (25b)

† This calculation is discussed in Miller & Dimotakis (1991), where, for the purpose of estimating
diffusion-layer thicknesses (transition from high-to-low values of the diffusing scalar; not the full
high-low-high cycle), half this estimate, i.e. λν ≈ π/kν ' 25λK , was used.
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Figure 18. Longitudinal turbulent-velocity spectrum. Saddoughi data compilation (1992, figure 8).
Legend modified to conform to present notation.

where the (approximate) prefactor of 0.1 was estimated for a turbulent jet. This is
indicated schematically in figure 19. In other flows, the uncoupled range of scales
can be expected to exhibit the same Reynolds number dependence, with, possibly, a
different prefactor.

A similar conclusion for a minimum (Taylor) Reynolds number, stemming from a
scale-separation requirement, was drawn by Pullin, Buntine & Saffman (1994). They
model turbulence as an ensemble of stretched-spiral Lundgren (1982) vortices, which
are then used to calculate fine-scale turbulence quantities. Using scaling arguments,
they related the size of the model vortices to the integral scale, l, and the Taylor scale,
λT . They found that scale separation between the integral scale and the expected
maximum stretched (full) length of the spiral structures requires ReT & 102. At lower
Taylor Reynolds numbers, stretched Lundgren spirals cannot be sustained (D. Pullin,
private communication).

On this basis, it can be argued that a necessary condition for fully-developed
turbulence and the Kolmogorov (1941) inertial-range similarity ideas to begin to
apply is the existence of a range of scales that are uncoupled from the large scales,
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Figure 19. Reynolds number dependence of spatial scales for a turbulent jet.

on the one hand, and free from the effects of viscosity, on the other. Considering that
we must have

λL

λν
> 1, (25c)

with some margin, we may infer that the existence of such a range of scales requires
a minimum Reynolds number of the order of 104, cf. (25b), or a Taylor Reynolds
number of 102, in accord with the minimum Reynolds number identified for transition
to fully-developed, well-mixed turbulent flows.

4. Discussion
The preceding discussion supports the notion that fully-developed turbulence re-

quires a minimum Reynolds number of order 104, or a minimum Taylor Reynolds
number of order 102, to be sustained. These values must be viewed as a necessary, but
not sufficient, condition for the flow to be in the fully developed state. The evidence
suggests that both the fact that the transition occurs and the range of Reynolds num-
ber values where it occurs are universal, i.e. independent of the flow geometry. That
Richtmyer–Meshkov flows as well as as accelerating, stratified shear layers (Pawlak
& Armi 1998) also exhibit this transition, at similar values of the Reynolds number,
indicates that the same mechanism(s) apply, even though in the latter two cases
volume sources of (baroclinic) vorticity are imporant to, or dominate, the dynamics.

This transition is different from the ones that mark transition out of a steady,
laminar state, followed by a transition marked by an increase in dimensionality (two
to three), then to multi-mode flow and chaotic behaviour. The criteria for those
transitions can be established by stability considerations, of one kind or another, in
which the stability of the flow sustained at a lower Reynolds number is altered by
an increase in Re, i.e. ‘bottom-up’ transitions. Accepting the proposed mechanism of
viscous decoupling of the outer and inner scales of turbulence as responsible for the
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transition criterion and the resulting minimum Reynolds number value, we see that,
in contrast, the mixing transition should be viewed as a ‘top-down’ transition. The
criteria for the latter are derived from fully developed flow, which cannot sustain
that state if the outer-flow Reynolds number falls below the minimum value of
Re ' 1–2× 104, or the Taylor Reynolds number below ReT ' 100–140.

Considering the possible range of flows, the definition of the Reynolds number
that should be used is an issue. The data suggest that turbulent shear flows, e.g. shear
layers and jets, can be parametrized by the outer-flow Reynolds number, defined
in terms of the velocity difference responsible for the shear driving the flow, e.g.
U = ∆U = U1 −U2 for shear layers and the local centreline velocity, U = ucl(x), for
jets, and the local transverse extent across which the shear is sustained, e.g. δ = δsl
for shear layers and δ = Rj(x), the local turbulent-region (e.g. visual) radius, for jets.
If this prescription is adopted for turbulent boundary layers, the data in figure 12
suggest that if the free-stream (edge) velocity, U = Ue, and local boundary-layer 1%
thickness, δ = δ1 are used to define the Reynolds number, then the transition value
would be somewhat higher (δ1 > δ∗). For the Richtmyer–Meshkov flow, for which the
proposed definition of Reynolds number is based on the large-scale vortical structure
circulation, i.e. Re = Γ/ν, the data also indicate transitional behaviour at Re ≈ 104,
with a definition that is close to the previous one, as discussed above.

There is a class of flows, however, for which an outer-scale Reynolds number, Re,
cannot be defined. Wind-tunnel turbulence behind a grid and computed turbulence
in a periodic box serve as examples. For such flows, the Taylor Reynolds number can
be used, with expected transition values in the range of ReT ' 100–140, based on
the approximate equivalence of ReT ≈ Re and as independently confirmed directly,
as discussed above. If both outer-scale and Taylor Reynolds numbers can be defined,
or are available, the two measures should yield similar results, i.e. within a factor of
2, or so.

Whereas this transition appears to be universal, how sharp this transition is, vs.
Reynolds number, does appear to depend on flow details. It is remarkably sharp
in the case of (Couette–Taylor) flow between concentric rotating cylinders. It is less
well-defined for a shear layer and, among the flows considered, the least well-defined
for turbulent jets. Perhaps an explanation for this variation lies in the definition of
the Reynolds number itself (1) and the manner in which the factors that enter are
imposed on each flow. For Couette–Taylor flow, both the velocity, U = Ωa and the
spatial scale, δ = b−a, where Ω is the differential rotation rate, with a and b the inner
and outer cylinder radii, are well-defined by the flow boundary conditions (Lathrop
et al. 1992b).

In the case of a zero-streamwise-pressure-gradient shear layer, the velocity U = ∆U
is a constant and reasonably well specified by the flow boundary conditions at a
particular station. The length scale δ = δ(x) = 〈δ(x, t)〉t, however, must be regarded
as a stochastic variable in a given flow with a relatively large variance (cf. figure 1b).
The Reynolds number for the shear layer is then the product of a well-defined variable
and a less well-defined, stochastic variable.

In the case of a turbulent jet, both the local velocity U = Uj(x) = 〈ucl(x, t)〉t, where
ucl(x, t) is the local jet-centreline velocity, and the length scale, δ = Rj(x) = 〈Rj(x, t)〉t,
the local jet radius, must be regarded as stochastic flow variables, each with its own
(large) variance. The local Reynolds number for a turbulent jet is then the product
of two stochastic variables and, as a consequence, its value is the least well-defined of
the three.

Viewing the Reynolds number itself as a stochastic variable, it would appear that
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the hierarchy of the sharpness of the transition to the fully-developed turbulent
state may be correlated with the sharpness with which the flow and the boundary
conditions allow the values of the outer-scale Reynolds number to be imposed on
inner-scale dynamics.

A related issue also arises as a consequence of the definition of the local Reynolds
number. As noted in the discussion of (1) and (2a), the local Reynolds number for a
shear layer increases with the downstream coordinate, whereas the Reynolds number
for a jet (2b) is a constant of the flow. As a consequence, a shear layer may possess
regions with local Reynolds numbers below the minimum and meet the mixing-
transition Reynolds number requirement within the spatial extent of a given flow, if
its streamwise extent is large enough. A turbulent jet, on the other hand, will either
meet the mixing-transition Reynolds number requirement over its entire downstream
extent, or not. This is also relevant to the description of and dynamics in other flows.

Accepting that a near-universal Reynolds number exists for a transition into a fully
developed state suggests a path for addressing at least some of the issues associated
with large-eddy simulation (LES) and subgrid scale (SGS) modelling in numerical
simulations of turbulent flows. To date, no clear candidate LES/SGS scheme has
emerged that provides a satisfactory solution to this problem. The preceding discussion
suggests that an acceptable LES/SGS model might be a direct numerical simulation
(DNS) at a Reynolds number as required to exceed the mixing transition by, perhaps,
not a large margin. To be sure, there is a host of Reynolds number dependent
phenomena that will not be addressed by such a scheme. Nevertheless, such a
simulation will represent many attributes of the turbulence sufficiently well, with no
other ad hoc assumptions and models, exploiting only the documented much-weaker
Re-dependence for Re > 1–2× 104, or ReT > 100–140.

5. Conclusions
Data on turbulent mixing, as well as other flow phenomena, support the notion

that fully-developed turbulent flow requires a minimum Reynolds number of 104,
or a Taylor Reynolds number of ReT ≈ 102, to be sustained. Conversely, turbulent
flow below this Reynolds number cannot be regarded as fully developed and can be
expected to be qualitatively different.

Manifestations of this transition may depend on the particular flow geometry,
e.g. the appearance of streamwise vortices and three-dimensionality, in the case
of shear layers. Typically, however, the transition can be identified as leading to
an enhanced-mixing turbulent-flow state. That such a transition occurs, as well as
the approximate Reynolds number where it is expected, appears to be a universal
property of turbulence. Interestingly, whereas transition from a steady/laminar flow
to unsteady/turbulent flow occurs over a relatively large range of Reynolds numbers
(depending on whether viscous damping acts with the aid, or not, of proximal walls),
the mixing transition to a more-developed turbulent state appears to occur within a
relatively narrow range of Reynolds numbers.

These observations suggest that direct numerical simulations (DNS), performed at
Re > 1–2 × 104, or so, may serve as good large-eddy simulation (LES) models for
many turbulent flows at higher Reynolds numbers.

This paper was prepared in honour of P. G. Saffman.
I would like to acknowledge the work and discussions on this topic with P. L. Miller,

and his assistance with the text, as well as the critical reading and suggestions by
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D. I. Pullin. This work was supported under AFOSR Grant Nos. F49620-94-1-0353
and F49620-98-1-0052. A first version of the data compilation and ideas presented
here was documented by the author (1993) as a GALCIT Report.

Note added in proof

A. Domaradzki has brought to my attention (private communication) that the
original observation by Heslot et al. (1987) that convective turbulence experiences
a transition at Ra ' 4 × 107 (cf. discussion on p. 86, herein) may be attributed to
a near-unity aspect ratio in those experiments. For high aspect ratios, most signs
of that transition, including the change in scaling exponents, disappear, or move to
much lower values of Ra (cf. discussion in Christie & Domaradzki 1993, 1994).
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